
 

SMART CONTRACT 
SECURITY AUDIT

NeoNomad Finance EVM Bridge

June, 2022 


Website: soken.io


Scan and check this report

was posted at Soken Github

https://soken.io


Smart Contract Security Audit

Table of Contents

Table of Contents	 
2
Disclaimer	 
3
Procedure	 
4
Terminology	 
5
Limitations	 
5
Audit Details	 
6
Social Profiles	 
6
About the project	 
6
Whitepaper Review	 
7
Audit Scope	 
8
Contract Function Details	 
8
Vulnerabilities checking	 
9
Security Issues	 
10
Conclusion	 
12
Soken Contact Info	 13



Smart Contract Security Audit

Disclaimer

This is a comprehensive report based on our automated and manual 
examination of cybersecurity vulnerabilities and framework flaws. We took 
into consideration smart contract based algorithms, as well.  Reading the full 
analysis report is essential to build your understanding of project’s security 
level. It is crucial to take note, though we have done our best to perform this 
analysis and report, that you should not rely on the our research and cannot 
claim what it states or how we created it. Before making any judgments, you 
have to conduct your own independent research.  We will discuss this in 
more depth in the following disclaimer - please read it fully.


DISCLAIMER: You agree to the terms of this disclaimer by reading this report 
or any portion thereof. Please stop reading this report and remove and delete 
any copies of this report that you download and/or print if you do not agree 
to these conditions. This report is for non-reliability information only and 
does not represent investment advice. No one shall be entitled to depend on 
the report or its contents, and Soken and its affiliates shall not be held 
responsible to you or anyone else, nor shall Soken provide any guarantee or 
representation to any person with regard to the accuracy or integrity of the 
report. Without any terms, warranties or other conditions other than as set 
forth in that exclusion and Soken excludes hereby all representations, 
warrants, conditions and other terms (including, without limitation, 
guarantees implied by the law of satisfactory quality, fitness for purposes 
and the use of reasonable care and skills). The report is provided as "as is" 
and does not contain any terms and conditions. Except as legally banned, 
Soken disclaims all responsibility and responsibilities and no claim against 
Soken is made to any amount or type of loss or damages (without limitation, 
direct, indirect, special, punitive, consequential or pure economic loses or 
losses) that may be caused by you or any other person, or any damages or 
damages, including without limitations (whether innocent or negligent).


Security analysis is based only on the smart contracts. No applications or 
operations were reviewed for security. No product code has been reviewed. 



Smart Contract Security Audit

Procedure

Our analysis contains following steps: 

1. Project Analysis;


2. Manual analysis of smart contracts:

• Deploying smart contracts on any of the network(Ropsten/Rinkeby) using 

Remix IDE

• Hashes of all transaction will be recorded

• Behaviour of functions and gas consumption is noted, as well.


3. Unit Testing:

• Smart contract functions will be unit tested on multiple parameters and 

under multiple conditions to ensure that all paths of functions are 
functioning as intended.


• In this phase intended behaviour of smart contract is verified.

• In this phase, we would also ensure that smart contract functions are not 

consuming unnecessary gas.

• Gas limits of functions will be verified in this stage.


4. Automated Testing:

• Mythril

• Oyente

• Manticore

• Solgraph 



Smart Contract Security Audit

Terminology

We categorize the finding into 4 categories based on their 
vulnerability: 

• Low-severity issue — less important, must be analyzed

• Medium-severity issue — important, needs to be analyzed and fixed

• High-severity issue —important, might cause vulnerabilities, must be 

analyzed and fixed

• Critical-severity issue —serious bug causes, must be analyzed and fixed.


Limitations

The security audit of Smart Contract cannot cover all vulnerabilities. Even if 
no vulnerabilities are detected in the audit, there is no guarantee that future 
smart contracts are safe. Smart contracts are in most cases safeguarded 
against specific sorts of attacks. In order to find as many flaws as possible, 
we carried out a comprehensive smart contract audit. Audit is a document 
that is not legally binding and guarantees nothing. 




Smart Contract Security Audit

Audit Details


Project Name: NeoNomad Finance 

Contract Name: BridgeAssist.sol, Token.sol 

Language: Solidity 

Compiler Version: v0.8.0 

Social Profiles

Project Website: https://www.neonomad.finance/


Project Telegram: https://t.me/neonomadfinance


Project Twitter: https://twitter.com/NeonomadFinance


Project Medium: https://medium.com/@NeoNomadFinance


Project Discord: https://discord.com/invite/Fj77EYcTNH


About the project

NeoNomad is one of the first decentralized ecosystems to bridge the gap 
between traditional finance, real world-assets, and DeFi on Solana. It is an 
all-inclusive, integrated ecosystem, providing diverse DeFi services and tools 
under one roof. Some of these services include a DEX, integrated payments 
services, and asset-backed NFTs. On the DEX, NeoNomad provides lending, 
yield farming, and staking, among other services. 

https://www.neonomad.finance/
https://t.me/neonomadfinance
https://twitter.com/NeonomadFinance
https://medium.com/@NeoNomadFinance
https://discord.com/invite/Fj77EYcTNH


Smart Contract Security Audit

Whitepaper Review

NeoNomad Finance Whitepaper has been reviewed on behalf of Soken 
Team. 


Whitepaper link: https://docs.neonomad.finance/nni/tokenomics-
fundamentals/whitepaper


Docs: https://docs.neonomad.finance/nni/ 

https://docs.neonomad.finance/nni/tokenomics-fundamentals/whitepaper
https://docs.neonomad.finance/nni/tokenomics-fundamentals/whitepaper
https://docs.neonomad.finance/nni/tokenomics-fundamentals/whitepaper
https://docs.neonomad.finance/nni/


Smart Contract Security Audit

Audit Scope

evm-bridge-gotbit-main/ 


	 contracts / 

	 	 BridgeAssist.sol

	 	 Token.sol

	 


Contract Function Details

+ BridgeAssist.sol
- [Ext] upload 
- [Ext] dispense 
- [Ext] clearLock 
- [Ext] addBackend 
- [Ext] removeBackend 
- [Ext] changeFeeAddress 
- [Ext] checkUserLock  



Smart Contract Security Audit

Vulnerabilities checking


Issue Description Checking Status

Compiler Errors Completed 

Delays in Data Delivery Completed 

Re-entrancy Completed 

Transaction-Ordering Dependence Completed 

Timestamp Dependence Completed 

Shadowing State Variables Completed 

DoS with Failed Call Completed 

DoS with Block Gas Limit Completed

Outdated Complier Version Completed 

Assert Violation Completed 

Use of Deprecated Solidity 
Functions

Completed 

Integer Overflow and Underflow Completed 

Function Default Visibility Completed 

Malicious Event Log Completed 

Math Accuracy Completed 

Design Logic Completed 

Fallback Function Security Completed 

Cross-function Race Conditions Completed 

Safe Zeppelin Module Completed 



Smart Contract Security Audit

Security Issues

1) Loop consuming excessive gas : BridgeAssist.sol  

Line: 97-99 & 108-110  
Low-severity 

Ethereum is a very resource-constrained environment. Prices per 

computational step are orders of magnitude higher than with centralized 

providers. Moreover, Ethereum miners impose a limit on the total number 

of Gas consumed in a block. If array.length is large enough, the function 

exceeds the block gas limit, and transactions calling it will never be 

confirmed. 


for (uint256 i = 0; i < array.length ; i++) {cosltyFunc();} 


This becomes a security issue, if an external actor influences array.length. 

E.g., if an array enumerates all registered addresses, an adversary can 

register many addresses, causing the problem described above. 


Recommendation:  
Either explicitly or just due to normal operation, the number of iterations 

in a loop can grow beyond the block gas limit, which can cause the 

complete contract to be stalled at a certain point. Therefore, loops with a 

bigger or unknown number of steps should always be avoided.




Smart Contract Security Audit

1) Gas optimization in increments : BridgeAssist.sol  
Line: 97 & 108 
Low-severity 

++i costs less gas compared to i++ or i += 1 for unsigned integers. In i++, 

the compiler has to create a temporary variable to store the initial value. 

This is not the case with ++i in which the value is directly incremented 

and returned, thus, making it a cheaper alternative.


Recommendation:  
Consider changing the post-increments (i++) to pre-increments (++i) as 

long as the value is not used in any calculations or inside returns. Make 

sure that the logic of the code is not changed.


2) Use of floating pragma : BridgeAssist.sol, Token.sol 
Low-severity 

It is recommended to follow the latter example, as future compiler 

versions may handle certain language constructions in a way the 

developer did not foresee. The developers should always use the exact 

Solidity compiler version when designing their contracts as it may break 

the changes in the future. 



Smart Contract Security Audit

Conclusion

Smart contracts are free from any critical, high or medium-
severity issues. 


NOTE: Please check the disclaimer above and note, that 
audit makes no statements or warranties on business model, 
investment attractiveness or code sustainability. 


 

Audited by



Smart Contract Security Audit

Soken Contact Info


Website: www.soken.io 


Mob: (+1)416-875-4174


32 Britain Street, Toronto, Ontario, Canada


Telegram: @team_soken


GitHub: sokenteam


Twitter: @soken_team

http://www.soken.io/
https://t.me/team_soken
https://github.com/sokenteam/smart_contract_audits
https://twitter.com/soken_team

	Table of Contents
	Disclaimer
	Procedure
	Terminology
	Limitations
	Audit Details
	Social Profiles
	About the project
	Whitepaper Review
	Audit Scope
	Contract Function Details
	Vulnerabilities checking
	Security Issues
	Conclusion
	Soken Contact Info

