
Customer: NeoNomad
Date: Jul 18th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
NeoNomad.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type Solana SPL token; Staking

Platform Solana

Language Rust

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://www.neonomad.finance/

Timeline 02.05.2022 – 18.07.2022

Changelog
13.05.2022 – Initial Review
13.06.2022 - Second Review
18.07.2022 - Third Review

www.hacken.io

https://www.neonomad.finance/

Table of contents
Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Findings 8

Recommendations 10

Disclaimers 11

www.hacken.io

https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.fmetaip462b
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.fmetaip462b

Introduction

Hacken OÜ (Consultant) was contracted by NeoNomad to conduct a Smart
Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/NeoNomadFinance/staking_contract
Commit:

b038f5fdd117cf94df8999c256540ce6c01fca51
Documentation: Yes
https://docs.neonomad.finance/neonomad-documentation/defi-tutorials/staking
-step-by-step-guide
Technical Documentation: Yes
NNI_STAKING_CONTRACT-1.pdf
JS tests: Yes
Contracts: neonomad/src/*
Second review scope
Repository:

https://github.com/NeoNomadFinance/staking_contract
Commit:

d7206d9bc7c09ab32825c9658404e7dec4b558f0
Documentation: Yes
https://docs.neonomad.finance/neonomad-documentation/defi-tutorials/staking
-step-by-step-guide
Technical Documentation: Yes
NNI_STAKING_CONTRACT-1.pdf
JS tests: Yes
Contracts: neonomad/src/*
Third review scope
Repository:

https://github.com/NeoNomadFinance/staking_contract
Commit:

08ad2d1ad6f2f4b0033ab9f069edf9d84c07e730
Documentation: Yes
https://docs.neonomad.finance/neonomad-documentation/defi-tutorials/staking
-step-by-step-guide
Technical Documentation: Yes
NNI_STAKING_CONTRACT-1.pdf
JS tests: Yes
Contracts: neonomad/src/*

www.hacken.io

https://github.com/NeoNomadFinance/staking_contract
https://docs.neonomad.finance/neonomad-documentation/defi-tutorials/staking-step-by-step-guide
https://docs.neonomad.finance/neonomad-documentation/defi-tutorials/staking-step-by-step-guide
https://github.com/NeoNomadFinance/staking_contract
https://docs.neonomad.finance/neonomad-documentation/defi-tutorials/staking-step-by-step-guide
https://docs.neonomad.finance/neonomad-documentation/defi-tutorials/staking-step-by-step-guide
https://github.com/NeoNomadFinance/staking_contract
https://docs.neonomad.finance/neonomad-documentation/defi-tutorials/staking-step-by-step-guide
https://docs.neonomad.finance/neonomad-documentation/defi-tutorials/staking-step-by-step-guide

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided functional and technical documentation. The total
Documentation Quality score is 8 out of 10. A few pages are not completed
yet or lack detailed documentation.

Code quality
The total CodeQuality score is 5 out of 10. No unit tests were provided for
scripts. Logging messages are not simple and clear. Code is not covered by
comments.

Architecture quality
The architecture quality score is 3 out of 10. All the logic is implemented
in one file. Some functions code could be moved to separate structs to be
used from there to improve code readability.

Security score
As a result of the third audit, the code contains 1 medium severity issue.
The security score is 9 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 8.2

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Description Status

Missing Signer
Checks

Case when instruction should only be available to
a restricted set of entities, but the program
does not verify that the call has been signed by
the appropriate entity (e.g., by checking
AccountInfo::is_signer).

Passed

Missing
Ownership
Checks

For accounts that are not supposed to be fully
user-controlled, the program does not check the
AccountInfo::owner field.

Passed

Missing rent
exemption
checks

All Solana accounts holding an Account, Mint, or
Multisig must contain enough SOL to be considered
rent exempt. Otherwise, the accounts may fail to
load.

Passed

Signed
invocation of
unverified
programs

The program does not verify the pubkey of any
program called via the invoke_signed() API.

Passed

Solana account
confusions

The program fails to ensure that the account data
has the type it expects to have.

Passed

Redeployment
with
cross-instance
confusion

The program fails to ensure that the wasm code
has the code it expects to have.

Passed

Arithmetic
overflow/underf
lows

If an arithmetic operation results in a higher or
lower value, the value will wrap around with
two’s complement.

Passed

Numerical
precision
errors

Numeric calculations on floating point can cause
precision errors, wich can accumulate.

Passed

Loss of
precision in
calculation

Numeric calculations on integer types such as
division can loss precision.

Passed

Casting
truncation

Potential truncation problem with a cast
conversion.

Passed

Exponential
complexity in
calculation

Finding computational complexity in calculations. Passed

Missing freeze
authority
checks

When freezing is enabled, but the program does
not verify that the freezing account call has
been signed by the appropriate freeze_authority.

Passed

www.hacken.io

Insufficient
SPL-Token
account
verification

Finding extra checks that should not exist with
the given type of accounts.

Passed

Over/under
payment of
loans

A loan overpayment is when paying extra towards a
loan over and above the agreed monthly
repayment.

A loan underpayment is when paying less towards a
loan over and below the agreed monthly
repayment.

Passed

Anti-pattern
instruction
calls

Calling some anti-pattern instructions specific
to Solana blockchain.

Passed

Unsafe Rust
code

The Rust type system does not check the memory
safety of unsafe Rust code. Thus, if a smart
contract contains any unsafe Rust code, it may
still suffer from memory corruptions such as
buffer overflows, use after frees, uninitialized
memory, etc.

Failed

Outdated
dependencies

Rust/Cargo makes it easy to manage dependencies,
but the dependencies can be outdated or contain
known security vulnerabilities. cargo-outdated
can be used to check outdated dependencies.

Failed

Redundant code Repeated code or dead code that can be cleaned or
simplified to reduce code complexity.

Passed

Do not follow
security best
practices

Failing to properly use assertions, check user
errors, multisig, etc.

Passed

Project
specification
implementation
check

Ensuring that the contract logic correctly
implements the project specifications.

Passed

Contract-specif
ic low-level
vulnerabilities

Examining the code in detail for
contract-specific low-level vulnerabilities.

Passed

Ruling out
economic
attacks

Economic rules that can be exploited to steal
funds.

Passed

DoS (Denial of
Service)

Execution of the code should never be blocked by
a specific contract state unless it is required.

Passed

www.hacken.io

Front-running
or sandwiching

Checking for instructions that allow
front-running or sandwiching attacks.

Passed

Unsafe design
vulnerabilities

Checking for unsafe design which might lead to
common vulnerabilities being introduced in the
future.

Passed

As-of-yet
solana unknown
classes of
vulnerabilities

Checking for any other, as-of-yet unknown classes
of vulnerabilities arising from the structure of
the Solana blockchain.

Passed

Rug-pull
mechanisms or
hidden
backdoors

Checking for rug-pull mechanisms or hidden
backdoors.

Passed

www.hacken.io

System Overview

NeoNomad is staking — a contract that rewards users for staking their
tokens. APY depends on the tokens provided by the owner and cannot be
calculated before reward tokens are deposited.

Risks
● Anchor is in active development, so all APIs are subject to change.

Anchor code is unaudited. The usage is risky.

www.hacken.io

Findings

Critical

No critical severity issues were found.

High

1. Insufficient system type.

UncheckedAccount is not recommended for using as system_program type,
it should be used carefully.`System_program` field should be a type
of anchor_lang::Program<System>, but instead UncheckedAccount is used
in CreateState, CreateFarmPool, CreateExtraRewardsConfigs,
SetExtraRewardsConfigs, CreatePoolUser, CreateUserEtherAddress,
SetUserEtherAddress, Stake, Harvest structs.

Contract: programs/neonomad/src/lib.rs

Functions: create_state, create_pool

Recommendation: Consider changing system_program field type to
Program<System>

Status: Fixed

Medium

1. Yanked package version.

Anchor-spl 0.16.2 is marked as yanked. This is usually done when the
authors of a package have a compelling reason that a certain version
of a package should not be used and strongly suggest that the package
should not be used.

Contract: programs/neonomad/

Recommendation: Consider updating anchor-lang to the latest version.
Not updating can potentially bring some security issues.

Status: Reported

2. Unsafe rust code.

`anchor-attribute-access-control` uses unsafe rust code. Crate
dependencies anchor-syn 0.16.2 -> bs58 0.3.1, anyhow 1.0.56,
proc-macro2 1.0.36 contain unsafe code.

Contract: programs/neonomad/

Recommendation: Consider removing this package from the dependency
list.

Status: Mitigated (with customer notice).

3. Using unsafe property.

Using ctx.remaining_accounts directly is not safe in the Context
struct. They are not deserialized or validated.

www.hacken.io

Contract: programs/neonomad/src/lib.rs

Functions: change_tokens_per_second, create_pool, close_pool,
change_pool_point, change_tokens_per_second

Recommendation: Consider removing this package from the dependency
list.

Status: Fixed

Low

1. Unneeded `return` statement.

A return statement that returns no value and occurs just before the
function would have "fallen through" the bottom. These statements may
be safely removed.

Contract: programs/neonomad/src/lib.rs:611:9

Function: get_extra_reward_percentage

Recommendation: Remove the return statement. The default value of u64
will be returned.

Status: Fixed

2. Extra unused lifetimes.

The additional lifetimes make the code look more complicated, while
there is nothing out of the ordinary going on. Removing them leads to
more readable code.

Contract:programs/neonomad/src/lib.rs:579:17

Function: validate<'info>

Recommendation: Remove unused lifetime.

Status: Fixed

3. Redundant code.

Useless conversion to the same type: `u128`.

Contract: programs/neonomad/src/lib.rs:696:26

Function: calculate_reward_amount

Recommendation: Consider removing `u128::from()`: `self.reward_debt`

Status: Fixed

4. Redundant code.

Useless conversion to the same type: `u128`.

Contract: programs/neonomad/src/lib.rs:699:34

Function: calculate_reward_amount

www.hacken.io

Recommendation: Consider removing `u128::from()`: `pending_amount`

Status: Fixed

5. Extra unused lifetimes.

The additional lifetimes make the code look more complicated, while
there is nothing out of the ordinary going on.
Removing them leads to more readable code.

Contract: programs/neonomad/src/lib.rs:707:30

Function: calculate_reward_debt

Recommendation: Remove unused lifetime.

Status: Fixed

6. Needless borrowing.

This expression borrows a reference (`&anchor_lang::prelude::Pubkey`)
immediately dereferenced by the compiler.

Contract:programs/neonomad/src/lib.rs

Function:change_tokens_per_second

Recommendation: Consider changing this &_ctx.program_id to:
`_ctx.program_id`.
Suggests that the receiver of the expression borrows the expression.

Status: Fixed

7. Needless borrowing.

This expression borrows a reference (`&anchor_lang::prelude::Pubkey`)
immediately dereferenced by the compiler.

Contract: programs/neonomad/src/lib.rs

Function: change_tokens_per_second

Recommendation: Consider changing this &provided_token_accountinfo
to: `provided_token_accountinfo`.
Suggests that the receiver of the expression borrows the expression.

Status: Fixed

8. Needless borrowing.

This expression borrows a reference (`&anchor_lang::prelude::Pubkey`)
immediately dereferenced by the compiler.

Contract: programs/neonomad/src/lib.rs

Function: close_pool

www.hacken.io

Recommendation: Consider changing this &provided_token_accountinfo
to: `provided_token_accountinfo`.
Suggests that the receiver of the expression borrows the expression.

Status: Fixed

9. Needless borrowing.

This expression borrows a reference (`&anchor_lang::prelude::Pubkey`)
immediately dereferenced by the compiler.

Contract: programs/neonomad/src/lib.rs

Function: close_pool

Recommendation: Consider changing this &_ctx.program_id to:
`_ctx.program_id`.
Suggests that the receiver of the expression borrows the expression.

Status: Fixed

10. Needless borrowing.
This expression borrows a reference (`&anchor_lang::prelude::Pubkey`)
immediately dereferenced by the compiler.

Contract: programs/neonomad/src/lib.rs

Function: close_pool_point

Recommendation: Consider changing this &_ctx.program_id to:
`_ctx.program_id`.
Suggests that the receiver of the expression borrows the expression.

Status: Fixed

11. Needless borrowing.

This expression borrows a reference (`&anchor_lang::prelude::Pubkey`)
immediately dereferenced by the compiler.

Contract: programs/neonomad/src/lib.rs

Function: change_pool_point

Recommendation: Consider changing this &_ctx.program_id to:
`_ctx.program_id`.
Suggests that the receiver of the expression borrows the expression.

Status: Fixed

12. Needless borrowing.

This expression borrows a reference (`&anchor_lang::prelude::Pubkey`)
immediately dereferenced by the compiler.

Contract: programs/neonomad/src/lib.rs

Function: change_pool_point

www.hacken.io

Recommendation: Consider changing this &provided_token_accountinfo
to: `provided_token_accountinfo`.
Suggests that the receiver of the expression borrows the expression.

Status: Fixed

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

